
1. eSTOMP Software Design Document, Rev. 1.0 . 2
1.1 1.0 Introduction . 2
1.2 2.0 References . 3
1.3 3.0 Definitions . 3
1.4 4.0 Architecture Requirements . 4

1.4.1 4.1 Architecture Use Cases . 4
1.4.2 4.2 Constraints . 4
1.4.3 4.3 Non-functional Requirements . 5
1.4.4 4.4 Overview of Key Objectives . 5

1.5 5.0 Solution . 6
1.5.1 5.1 Relevant Architectures . 6
1.5.2 5.2 Architecture – Structural View . 6
1.5.3 5.3 Architecture – Dynamic View . 7
1.5.4 5.4 Implementation Strategy . 7
1.5.5 5.5 Architecture Analysis . 8
1.5.6 5.6 Risks . 8

2

eSTOMP Software Design Document, Rev. 1.0

V. Freedman

Yilin Fang

M.D. White

February 2015

PNNL-24119

Prepared for
the U.S. Department of Energy

under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352

This document maintained electronically at

https://spcollab.pnnl.gov/sites/stompshare/Shared%20Documents/Forms/AllItems.aspx

Revision History

Revision Date Summary of Changes

1.0 02/2015 Original Version

Approvals

This document is electronically approved and signed via the PNNL Electronic Records & Information Capture Architecture
(ERICA) system.

1.0 Introduction
The Software Design Document (SDD) defines the high level design and technology for development of eSTOMP, the
scalable version of STOMP that uses the Global Array Toolkit (GA) (Nieplocha et al. 2006). GA provides an efficient and
portable "shared-memory" programming interface for distributed-memory computers, which permits eSTOMP to be executed
on multiple processor cores. Within this document, narrative and graphical documentation of how eSTOMP is designed and
integrated with GA is provided. If significant changes to the design of eSTOMP occur as a result of further development
efforts during the life cycle of this software, this SDD will be revised.

https://spcollab.pnnl.gov/sites/stompshare/Shared%20Documents/Forms/AllItems.aspx

3

The purpose and intended use of the eSTOMP software is to produce numerical predictions of hydrogeologic flow and
transport phenomena in variably saturated subsurface environments. Because of potential memory limitations and long
simulation times when executing on a single processor, eSTOMP is designed to be executed on multiple processor cores,
using efficient I/O data structures when needed.

1.1. Purpose

The purpose of this SDD is to provide a description of the eSTOMP design with sufficient detail to guide software
development.

1.2. Scope

This SDD is for eSTOMP, the scalable version of STOMP, to show the feasibility of executing eSTOMP on a large number of
processor cores. This SDD is focused on both the design of the core code, STOMP, as well as the integration of GA. The
architectural constraints of the system, the functional requirements with a significant impact on the architecture, use-case
realization, concurrency aspects and performance issues and constraints are described within this document.

2.0 References

Fayer, M.J. and Freedman, V.L. 2015. Software Quality Assurance Plan (SQAP) for Subsurface Transport Over Multiple
Phases (STOMP/eSTOMP).

Nichols, W.E., N.J. Aimo, M. Oostrom and M.D. White. 1997. STOMP Subsurface Transport Over Multiple Phases
Application Guide. PNNL-11216, Pacific Northwest National Laboratory, Richland, Washington.

Ward AL, MD White, EJ Freeman, and ZF Zhang. 2005. STOMP Subsurface Transport Over Multiple Phase :Addendum
Sparse Vegetation Evapotranspiration Model for the Water-Air-Energy Operational Mode. PNNL-15465, Pacific Northwest
National Laboratory, Richland, Washington.

Nieplocha, J., B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra. 2006. "Advances, Applications and Performance
of the Global Arrays Shared Memory Programming Toolkit" —International Journal of High Performance Computing
Applications, Vol. 20, No. 2, 203-231p.

PNNL SharePoint Site STOMPshare ()https://spcollab.pnnl.gov/sites/stompshare/

PNNL STOMP website ().http://stomp.pnl.gov

Software Engineering Standards Committee of the IEEE Computer Society, “IEEE Recommended Practice for Software
, IEEE Std 1016-1998.Design Descriptions”

White M.D. and M. Oostrom. 2006. STOMP Subsurface Transport Over Multiple Phases Version 4.0: User’s Guide.
PNNL-15782, Pacific Northwest National Laboratory, Richland, Washington.

White, M.D., and M. Oostrom. 2000. STOMP Subsurface Transport Over Multiple Phase: PNNL-11216Theory Guide
(UC-2010), Pacific Northwest National Laboratory, Richland, Washington.

Zhang, Z.F., V.L. Freedman, G.D. Tartakovsky and M.D. White. 2012. Requirements for Subsurface Transport Over Multiple
Phases (STOMP).

3.0 Definitions

Term Definition

Software Design
Document (SDD)

A document that completely describes all of the function of a proposed system and the
constraints under which it must operate

Global Arrays Toolkit
(GA)

An API for providing a portable “shared-memory” programming interface for
“distributed-memory” computers.

Aggregate Remote
Memory Copy Interface
(ARMCI)

Independent communication library used with GA that provides vector and strided interfaces to
optimize performance of remote memory copy operations for non-contiguous data.

https://spcollab.pnnl.gov/sites/stompshare/
http://stomp.pnl.gov

4

Message Passing
Interface (MPI)

A standardized and portable message passing system designed to function on a wide variety of
parallel computers

HDF5 A data model, library, and file format for storing and managing data. It supports an unlimited
variety of datatypes, and is designed for flexible and efficient I/O and for high volume and
complex data.

PETSc A suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations

I/O Input/Outptut

ScaLAPACK A well known software library for linear algebra computations on distributed-memory
architectures. GA interfaces with this library to solve systems of linear equations and also to
invert matrices.

4.0 Architecture Requirements

4.1 Architecture Use Cases

Architecture use cases are provided in the STOMP/eSTOMP test suite that can be accessed at https://stomp.pnnl.gov/QA/in
, as well as in the application examples provided in the STOMP Application Guide (Nichols et al. 1997).dex.htm

4.1 Stakeholder Architectural Requirements

The architecture of eSTOMP is based on STOMP, and uses a variable source code configuration where source code
configurations are called operational modes. Operational modes are classified according to the solved governing flow
equations and transport equations, constitutive relation equations, and implementation type. This architectural constraint will
provide for flexibility to meet the needs of eSTOMP users by permitting efficient coupling of needed equations to solve for a
variety of subsurface flow and transport problems without the substantial computational overhead that would burden the
simulator if all possible equations and implementation types were included in a single source code configuration. The variable
source code configuration also provides for inclusion of modules that may be restricted in scope to certain clients or use
scenarios.

The Global Arrays Toolkit provides an interface that allows for data distribution across processors in eSTOMP, while
maintaining the type of global index space and programming syntax similar to the serial STOMP code. It uses a
shared-memory programming model by calling functions that transfer data between a global address space (a distributed
array) and local storage. At the same time, GA is used in conjunction with the Message Passing Interface (MPI) libraries.

Specifically, stakeholder architectural (SA) requirements include:

 SA.1. The eSTOMP source code configuration is variable according to operational modes.

 SA.2. The GA library permits data distribution across processors, while maintaining syntax similar to serial STOMP code

4.2 Constraints

The ANSI Standard Fortran 77 and Fortran 90 will be used (without extensions) for all source code to ensure maximum
portability to different operating systems, computer platforms, and Fortran compilers. Constraints on the eSTOMP input,
controlled through a text file, are stipulated in the eSTOMP Software Requirements Document. The input file requirements
differ with each Operational Mode, consistent with the variable source code architecture of STOMP.

The GA Toolkit combines the advantages of a distributed memory model with the ease of use of shared memory. It is able to
exploit SMP locality and deliver peak performance within the SMP by placing user's data in shared memory and allowing
direct access rather than through a message-passing protocol. This is achieved by function calls that provide information on
which portion of the distributed data is held locally and the use of explicit calls to functions that transfer data between a
shared address space and local storage. The distributed memory model stores data for the center of each cell in the grid.

Specifically, constraints (C) incude:

https://stomp.pnnl.gov/QA/index.htm
https://stomp.pnnl.gov/QA/index.htm

5

 C.1. eSTOMP inputs are controlled through an ascii text file, as defined in the STOMP/eSTOMP User Guide.

 C.2. The eSTOMP input file is identical to the STOMP input file, except when parallel execution warrants a change in its
structure.

 C.3. The eSTOMP data is stored for cell centers and no data is stored for cell faces. Hence, outputs such as velocity on
cell faces are computed when needed.

 C.4. The GA within eSTOMP is compatible with and extends the distributed memory model of MPI. Hence, the GA library
relies on the execution/run-time environment provided by MPI.

 C.5. The GA relies on the linear algebra functionality provided by ScaLAPACK.

4.3 Non-functional Requirements

Language: The ANSI Standard Fortran 77 and Fortran 90 will be used for all source code to ensure maximum portability to
different operating systems, computer platforms, and Fortran compilers. Fortran 90 modules will be used in place of common
blocks. Memory will be allocated dynamically using allocatable arrays and pointers and explicitly deallocated when they are
no longer needed.

Organization: Code is modular, and in general, each subroutine or a group of like subroutines exist in a single file. Names of
the subroutines and directories reflect their purpose.

Performance: Because eSTOMP can be executed on multiple cores, it is expected that its execution times will be faster with
eSTOMP relative to STOMP. Because multiple factors need to be considered in determining efficiency, eSTOMP
performance is not stipulated . Therefore, no requirements are placed on the eSTOMP software in this regard but it isa priori
noted that efficiency should be considered in the life cycle of the software development.

Reliability: The eSTOMP simulator will gracefully exit when code operation is halted for reasons of:

Numerical non-convergence
Detection of input file format errors
Exceedance of user-specified simulation steps

Gracefully exit here is used to mean that the code will record the reason for termination in an appropriate output file, write a
restart file if solution is in progress, and close all open files.

Simplicity: The eSTOMP simulator will use an input file format structure that promotes human readability. The input file will be
an ASCII text file and input will be organized into groupings of related parameters and will be identical as possible to the
STOMP input file.

Scalability: The design of the eSTOMP simulator is to take advantage of shared memory and data access across processors
through the Global Arrays Toolkit.

Specifically, non-functional requirements (NF) include:

 N.1. eSTOMP exits gracefully when non-convergence occurs

 N.2. eSTOMP exits gracefully and reports appropriate errors when input file formatting errors are detected.

 N.3. eSTOMP reports convergence failures and exits gracefully if the number of user-specified or internally-specified
iterations for convergence has been exceeded.

 N.4. eSTOMP terminates when user-specified number of simulation steps are exceeded.

 N.5 eSTOMP uses an input file structure that promotes human readability, organizing ascii input into groupings called
cards.

4.4 Overview of Key Objectives

6

1.
2.
3.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

In this section, an architectural overview of eSTOMP is provided.

STOMP key objectives (KO) include:

 KO.1. Read input for a problem from a structured ASCII file that conforms to the format specified in the STOMP/eSTOMP
User's Guide.

 KO.2. Numerically solve the partial differential equations that describe subsurface environment transport phenomena.

 KO.3. Write results to an output file, plot files, surface flux integration files and standard output.

 KO.4. Permit the execution of eSTOMP on multiple cores using GA.

5.0 Solution

5.1 Relevant Architectures

Global Arrays is a high-performance programming model for scalable, distributed-memory, parallel computer systems.
 Global Arrays is based on the concept of globally accessible dense arrays that are logically shared, yet physically distributed
onto the memories of a parallel distributed computer system. Global Arrays is critical to the successful parallelization of
eSTOMP, as it allows for easy portability of STOMP to eSTOMP. By incorporating Global Arrays, the simulator is able to take
full advantage of multi-core processor architectures.

A single user executes eSTOMP on one or more processors using a single invocation of eSTOMP. All data inputs are read
and processed from the single invocation of eSTOMP.

5.2 Architecture – Structural View

The Unix "make" utility is used to assist in building an eSTOMP executable for a given operational mode and selected solver
package. Each operational mode of the eSTOMP simulator is made up of independent subroutines. Unlike STOMP, no
shared routines exist among the different operational modes of eSTOMP.

Shared arrays in eSTOMP are located in modules. Globally shared variables are communicated among the subroutines and
functions of the eSTOMP code. Hence, subroutines generally have few arguments. Global variables for both STOMP and
eSTOMP are described in the STOMP/eSTOMP User Guide.

 The structure of the architecture is hierarchical, with the main program module in control of the execution of the software.
When executed, the main program module carries out activities in three major areas:

Initialization
Solution (of governing partial differential equations for flow and transport)
Closure

From there, subroutines and functions are invoked as necessary in the code to complete activities and solve the governing
partial differential equations. The control flow is summarized here.

Initialization includes:

Start clocks
Call MPI (job startup, run-time execution and collective communications)
Initialize variables
Print file banners
Read input data
Create shared data structures
Check physical states
Set initial primary increments
Set initial saturation properties
Set initial physical properties
Set initial concentration
Create PETSc matrices
Load PETSc matrices

7

Solution of the coupled partial differential governing equations, which differ depending on the operational mode of eSTOMP
used, involve iterative solution to meet convergence criteria for each equation. Flow equations are solved first, and transport
equations second. Solution of the flow proceeds from time step to time step, beginning with an initial step and ending when
the simulation limit is reached (either the simulated time duration or any user-defined limit on the number of time steps or
execution time). The software itself controls time step length; if convergence criteria are not met, the time step is reduced
automatically and solution attempted again for the shorter time step. Conversely, if the convergence criteria are met, the
length of the subsequent time step is allowed to grow according to user instructions provided in the input file. Once flow is
solved for a time step, the transport solution is undertaken for the same time step.

Closure consists of writing plot files, restart files, and closing open unit files. Closure activities are undertaken at user-defined
times and when the simulation limit is reached.

Specific structural design (SD) requirements include:

 SD.1. Arrays are shared in modules for each operational mode of eSTOMP.

 SD.2. Program execution will first proceed through initialization of all variables, print file banners, read input data, create
global arrays, check physical states, set matrix pointers, set initial primary increments, set initial saturation properties, set
initial physical properties and set initial concentrations.

 SD.3. eSTOMP solution of the partial differential equations uses Newton-Raphson iteration and uses the PETSc library
for the solution of the nonlinear equations. Solution of the equations proceeds from the initial time step until the final time step
is reached, or some other simulation limit has been reached.

 SD.4. eSTOMP software controls time step length within the constraints specified by the user.

 SD.5. eSTOMP closure consists of writing to the requested output files, closing all open unit files, and calling the MPI
finalize routine.

Perl post-processing scripts can be used to process the output data from STOMP. The outputTo.pl script can process data
from the output file, the plotTo.pl script can be used to process data from the plot files, and the surfaceTo.pl script can be
used to process data from the surface or other surface flux files. However, these scripts are not required for extracting data,
but require that data be written in ascii data format. eSTOMP can also write binary files written in an efficient compressed file
format using the HDF5 library.

5.3 Architecture – Dynamic View

The dynamic architecture (DA) components of STOMP interact with each other using:

 DA.1. Shared data: data structures in eSTOMP are shared using the shared memory storage available in the GA Toolkit.

 DA. 2. Peer-to-peer: all code components in STOMP can communicate directly with any other through the GA libraries,
message passing interface (MPI) libraries, or through passed arguments.

 DA.3. In keeping with FORTRAN standards, all code execution is sequential; only one line of code may be active at one
time. Control begins in the program module and is passed to subroutines and functions as the logic of the code directs.

5.4 Implementation Strategy

STOMP is developed almost exclusively using ANSI Standard FORTRAN 77 so that the software can be compiled, linked,
and run on a variety of hardware platforms and operating systems. In eSTOMP, however, FORTRAN 90 constructs are
needed, such as the use of modules and dynamic array allocation. Hence eSTOMP is a mixture of standard FORTRAN 77
and FORTRAN 90, and a FORTRAN 90 compiler is needed to compile the code.

Several libraries are ne to compile the eSTOMP code, including PETSc, GA, ARMCI and MPI. The solver libraryeded
(PETSc) is not used in the serial implementation of STOMP, so small differences in results could occur based on differences
between the PETSC (eSTOMP) and SPLIB (STOMP) libraries. The source for all libraries used by eSTOMP will be
documented in the software configuration management system and appropriately referenced.

Specific implementation strategy (IS) design requirements include:

8

 IS.1. eSTOMP must be compiled using a FORTRAN 90 compiler, which generates a static executable with dynamic array
allocation.

 IS.2. eSTOMP requires the use of the PETSc solver (http://www.mcs.anl.gov/research/projects/petsc/download/index.ht
ml)

 IS.3. eSTOMP requires the use of the GA Toolkit (http://hpc.pnl.gov/globalarrays/download.shtml)

 IS.4. If including the use of the HDF5 I/O libraries, the the HDF5 libraries are required (http://www.hdfgroup.org/HDF5/rel
ease/obtain5.html)

5.5 Architecture Analysis

eSTOMP has evolved since the software's inception and is expected to continue to evolve as the need for additional
operational modes, additional constitutive equations, and other needs emerge. The addition of eSTOMP operational modes
will likely result from the conversion of existing modes of STOMP, using current eSTOMP modes as templates for integration
of GA. The open architecture described in this SDD supports these changes.

Because the software is used to simulate systems (not as operational software), post-deployment to the software will be
accommodated by offering newer versions of the software to replace older versions (i.e., there is no need to consider
deployed applications while these are in use).

Specific architectural analysis (AA) requirements include:

 AA.1. As new capabilities are added, the modularity of the current eSTOMP design will be supported. Backwards
compatibility will be maintained.

 AA.2. As new capabilities are added, a similar input file structure between STOMP and eSTOMP will be maintained to
the extent possible

 AA.3. As new capabilities are added, the GA library will be used to make eSTOMP scalable

5.6 Risks

In addition to the software risks identified in the Software Quality Assurance Plan (SQAP), risks of utilizing third party software
specific to eSTOMP, as described in this plan, are described in this section.

Several libraries are needed to compile the eSTOMP code, including PETSc, GA Toolkit, ARMCI and MPI (More
details on these libraries can be found in the Implementation Strategy section of this document).
Exiting and error solutions for eSTOMP are detailed in the Non-Functional Requirements section.

http://www.mcs.anl.gov/research/projects/petsc/download/index.html
http://www.mcs.anl.gov/research/projects/petsc/download/index.html
http://hpc.pnl.gov/globalarrays/download.shtml
http://www.hdfgroup.org/HDF5/release/obtain5.html
http://www.hdfgroup.org/HDF5/release/obtain5.html

	eSTOMP Software Design Document, Rev. 1.0
	1.0 Introduction
	2.0 References
	3.0 Definitions
	4.0 Architecture Requirements
	4.1 Architecture Use Cases
	4.2 Constraints
	4.3 Non-functional Requirements
	4.4 Overview of Key Objectives

	5.0 Solution
	5.1 Relevant Architectures
	5.2 Architecture – Structural View
	5.3 Architecture – Dynamic View
	5.4 Implementation Strategy
	5.5 Architecture Analysis
	5.6 Risks

