
 PNNL-SA-92585

	

	

	

	

	

	

Software	
 Design	
 Document	
 (SDD)	

For	

Subsurface	
 Transport	
 Over	
 Multiple	
 Phases	
 (STOMP)	
 	

Rev. 2.0

V. Freedman
M.D. White

November 2012

 PNNL-SA-92585

Approvals
Role Name Signature Date
Software
Developer

Mark D.
White

12/12/2012

SQE Kary M.
Cook

12/11/2012

Revision History
Revision Date Comments
2.0 12/13//2012 Updated 2007 Document

EED Energy and Environment Directorate
PL Product Line
PMOD Project Management Office Director
PMP Project Management Plan
RIDS Record Inventory and Disposition Schedule
SCM Software Configuration Manager
SCMP Software Configuration Management Plan
SCR Software Change Request
SDD Software Design Document
SQE Software Quality Engineer
SRD Software Requirements Document
STOMPshare STOMP sharepoint site
STP Software Test Plan
TGM Technical Group Manager

 PNNL-SA-92585

Table of Contents

1.0 Software Context .. 4
2.0 Architecture Requirements ... 4

2.1. Overview of Key Objectives ... 4
2.2. Architecture Use Cases ... 4
2.3. Stakeholder Architectural Requirements .. 4
2.4. Constraints ... 5
2.5. Non-functional Requirements ... 5

3.0 Solution .. 6
3.1. Relevant Architectural Patterns ... 6
3.2. Architecture – Structural View ... 6
3.3. Architecture – Dynamic View ... 9
3.4. Implementation Strategy ... 9
3.5. Architecture Analysis .. 10
3.6. Risks .. 10
3.7. References ... 11

 PNNL-SA-92585

Software Design Document

1.0 Software Context
This Software Design Document (SDD) describes the architecture of the Subsurface
Transport Over Multiple Phases (STOMP) Software. If significant changes to the design
occur as a result of further development efforts during the life cycle of this software, this
SDD will be revised.

The purpose and intended use of the STOMP software is to produce numerical
predictions of thermal and hydrogeologic flow and transport phenomena in variably
saturated subsurface environments. Those environments may be contaminated with
volatile or nonvolatile organic compounds, supercritical CO2, or radionuclides including
radioactive chain decay processes.

The software is a variable-source Fortran code that requires compilation using an ANSI-
standard FORTRAN compiler for the host platform and selection of a specific solution
mode and solver.

The use and purpose of this software is more fully described in Nichols et al. (1997),
White and Oostrom (2000), Ward et al. (2005), White and McGrail (2005), White and
Oostrom (2006), and White et al. (2012).

2.0 Architecture Requirements

2.1. Overview of Key Objectives
STOMP key objectives (KO) include:

KO.1. Read input for a problem from a structured ASCII file that conforms to the
format specified in the STOMP User’s Guide.

KO.2. Numerically solve the partial differential equations that describe subsurface
environment transport phenomena

KO.3. Write results to an output file, plot files, surface flux integration files and
standard output.

2.2. Architecture Use Cases
Architecture use cases are provided in the numerous application examples provided in the
STOMP Application Guide (Nichols et al. 1997).

2.3. Stakeholder Architectural Requirements

 PNNL-SA-92585

The architecture uses a variable source code configuration where source code
configurations are called operational modes. Operational modes are classified according
to the solved governing flow equations and transport equations, constitutive relation
equations, and implementation type. This architectural constraint will provide for
flexibility to meet the needs of multiple STOMP software users by permitting efficient
coupling of needed equations to solve for a variety of subsurface flow and transport
problems without the substantial computational overhead that would burden the simulator
if all possible equations and implementation types were included in a single source code
configuration. The variable source code configuration also provides for inclusion of
proprietary modules that may be restricted in scope to only certain clients or use
scenarios. Specifically, stakeholder architectural (SA) requirements include:

SA.1. The STOMP source code configuration is variable according to operational
modes.

2.4. Constraints
The ANSI Standard Fortran 77 will be used (without extensions) for all source code to
ensure maximum portability to different operating systems, computer platforms, and
Fortran compilers.
Constraints on the STOMP input, controlled through a text file, are stipulated in the
STOMP Software Requirements Document. The input file requirements differ with each
Operational Mode, consistent with the variable source code architecture of STOMP.
Specifically, constraints (C) incude:

C.1. STOMP inputs are controlled through an ascii text file, as defined in the
STOMP User Guide.

2.5. Non-functional Requirements
Performance: It is recognized that the performance of a numerical simulator for nonlinear
processes cannot be stipulated a priori. Therefore, no requirements are placed on the
STOMP software in this regard but it is noted that every effort to employ efficient
numerical solvers and techniques is expected in code design and development.

Reliability: The STOMP simulator will degrade gracefully when code operation is halted
for reasons of:

• Numerical non-convergence

• Detection of input file format errors

• Exceedance of user-specified runtime or simulation steps

• Exceedance of parameter limits for array sizing

Degrade gracefully here is used to mean that the code will record the reason for
termination in an appropriate output file, write a restart file if solution is in progress, and

 PNNL-SA-92585

close all open files.

Simplicity: The STOMP simulator will use an input file format structure that promotes
human readability. The input file will be an ASCII text file and input will be organized
into groupings of related parameters.

Scalability: The design of the STOMP simulator will utilize code scaling parameters that
will permit the software to be efficiently sized to the features, events, and processes the
problem includes. This is achieved by use of an includable ‘parameters’ file that includes
all scalable code parameters that determine the size of each dimension of variable arrays.
For example: parameters LX, LY, and LZ specify the maximum number of nodes in the
x-, y-, and z- dimensions respectively. These parameters are set in the ‘parameters’ file
once, included in all code modules that require these parameters, and thereby allow
efficient scaling of the software to the problem under consideration.

Specifically, non-functional requirements (NF) include:

NF.1. STOMP exits gracefully when non-convergence occurs

NF.2. STOMP exits gracefully and reports appropriate errors when input file
formatting errors are detected.

NF.3. STOMP reports convergence failures and exits gracefully if the number of
user-specified iterations for convergence has been exceeded.

NF.4. STOMP terminates when user-specified runtimes or simulation steps are
exceeded.

NF.5. STOMP exits gracefully and reports appropriate errors when parameter limits
are exceeded.

NF.6. STOMP uses an input file structure that promotes human readability,
organizing ascii input into groupings called cards.

NF.7. STOMP can be compiled statically and dynamically, where in both cases,
array sizes are set so that the arrays are sized to fit the problem.

3.0 Solution

3.1. Relevant Architectural Patterns
Monolithic system architecture is specified (single user, single invocation; processing,
data, and user interface all reside in the same system).

3.2. Architecture – Structural View
STOMP uses a single program module to control execution of the code, and a number of
dependent, single-purpose subroutines to carry out specific calculations or operations.

 PNNL-SA-92585

However, STOMP is in fact a multiple-source code, customizable to a large number of
operational modes (e.g., water, water-air, water-air-oil, etc.). Each operational mode is
essentially a different software program, using a different program module to control
execution of the code and a different combination of available subroutines depending on
the needs of the operational mode. STOMP currently has six operational modes that are
identified as safety software (-water,-water-air-energy, -water-oil, -water-oil-air, -CO2, -
CO2e). Additional modes, such as the hydrates or fuel cell modes, are considered
research codes and are not classified as safety software. Other modes may be under
development at any given time (but not yet qualified).

The Unix “make” utility is used to assist in building a STOMP executable for a given
operational mode and selected solver package. The STOMP source includes embedded
tags that direct inclusion or exclusion of code segments depending on the operational
mode, solver, and other options chosen.

Each operational mode of the STOMP simulator comprises global and mode dependent
subroutines. Global subroutines are those subroutines that are generally included in more
than one operational mode. Mode dependent subroutines, however, are associated with a
single operational mode. Subroutine names are generally descriptive abbreviations.
These abbreviations frequently contain the letters G, L, or N, which respectively
correspond to the gas, aqueous, or NAPL phases. Other common letters are A, CO2, and
W, which represent air, carbon dioxide, aqueous, and water compositions, respectively.
The letter T refers to solute transport, the letter E to energy equations (thermal transport).
Mode dependent subroutines include a numerical suffix, which corresponds to the
operational mode.

The STOMP simulator variable structure is designed around large arrays held in common
blocks, which are included in nearly every subroutine. For the statically compiled
STOMP, arrays are held in common blocks, and the sTeP preprocessor can be executed
prior to compilation to generate the parameters file. However, this is not a requirement,
as the user may manually edit an existing parameters file to set the appropriate array
sizes. For the dynamically compiled STOMP, shared arrays are located in modules.
Globally shared data variables are therefore another means of communication between
various modules of the STOMP code. Hence, subroutines generally have very few
arguments. Table 3.2 in the STOMP User’s Guide (White & Oostrom, 2006) identifies
the global variables in STOMP and their descriptions and dimensionality.

The structure of the architecture is hierarchical, with the main program module in control
of the execution of the software. When executed, the main program module carries out
activities in three major areas:

1. Initialization
2. Solution (of governing partial differential equations for flow and transport)
3. Closure

From there, subroutines and functions are invoked as necessary in the code to complete
activities and solve the governing partial differential equations. Depiction of the control

 PNNL-SA-92585

flow is shown in Figures 3.1 and 3.2 of the STOMP Version 4.0 User’ Guide (White and
Oostrom 2006), and is summarized here.

Initialization includes:

1. Start clocks
2. Initialize variables
3. Print file banners
4. Read input data
5. Check physical states
6. Set matrix pointers
7. Set initial primary increments
8. Set initial saturation properties
9. Set initial physical properties
10. Set initial concentration

Solution of the coupled partial differential governing equations, which differ depending
on the operational mode of STOMP used, involve iterative solution to meet convergence
criteria for each equation. Flow equations are solved first, and transport equations
secondly. Solution of the flow proceeds from time step to time step, beginning with an
initial step and ending when the simulation limit is reached (either the simulated time
duration or any user-defined limit on the number of time steps or execution time). The
software itself controls time step length; if convergence criteria are not met, the time step
is reduced automatically and solution attempted again for the shorter time step.
Conversely, if the convergence criteria are met, the length of the subsequent time step is
allowed to grow according to user instructions provided in the input file. Once flow is
solved for a time step, the transport solution is undertaken for the same time step.

Closure consists of writing plot files, restart files, and closing open unit files. Closure
activities are undertaken at user-defined times and when the simulation limit is reached.

The code design is described in further detail in Section 3.0, “Code Design” of the
STOMP Version 4.0 User’s Guide (White and Oostrom, 2006).

Specific structural design (SD) requirements include:

SD.1. STOMP source code contains tags that direct inclusion or exclusion of code
segments depending on user-specified options (e.g., inclusion of ECKEChem,
EPMech, SPLIB solver)

SD.2. Arrays are shared either in common blocks or modules in each operational
mode of STOMP.

SD.3. Program execution will first proceed through initialization of all variables,
print file banners, read input data, check physical states, set matrix pointers,
set initial primary increments, set initial saturation properties, set initial
physical properties and set initial concentrations.

SD.4. STOMP solution of the partial differential equations uses Newton-Raphson
iteration. Solution of the equations proceeds from the initial time step until

 PNNL-SA-92585

the final time step is reached, or some other simulation limit has been reached.
SD.5. STOMP software controls time step length within the constraints specified by

the user.
SD.6. STOMP closure consists of writing to the requested output files and closing

all open unit files.

Perl post-processing scripts can be used to process the output data from STOMP. The
outputTo.pl script can process data from the output file, the plotTo.pl script can be used
to process data from the plot files, and the surfaceTo.pl script can be used to process data
from the surface or other surface flux files. However, these scripts are not required for
extracting data, as all outputs from STOMP are in an ascii data format.

3.3. Architecture – Dynamic View
The dynamic architecture (DA) components of STOMP interact with each other using:

DA.1. Shared data: all code components in STOMP directly share data that are
identified in the ‘commons’ block, or in the FORTRAN modules.

DA.2. Peer-to-peer: all code components in STOMP can communicate directly with
any other through the use of shared data or through passed arguments.

DA.3. In keeping with FORTRAN standards, all code execution is sequential; only
one line of code may be active at one time. Control begins in the program
module and is passed to subroutines and functions as the logic of the code
directs.

3.4. Implementation Strategy
STOMP is developed almost exclusively using ANSI Standard FORTRAN 77 so that the
software can be compiled, linked, and run on a variety of hardware platforms and
operating systems. To compile a dynamic STOMP executable, a FORTRAN 90 compiler
is needed.

All of STOMP is custom built except for some solver packages used to solve the matrix
equations. The banded matrix solver is custom built, but the open-source SPLIB solver
set will also be used to provide a more efficient solver for larger problems.

External solvers are obtained from universities and other research agencies that generate
computer code suites that provide for efficient iterative solution of nonlinear matrix
equations. The source of all numerical solver code packages incorporated into the
STOMP simulator will be documented in the software configuration management system
and appropriately referenced. Checks against Internet information sources on the current
software status of incorporated numerical solvers will be checked annually or more often
to capture code corrections, if any, into the error tracking system for STOMP software.

Specific implementation strategy (IS) design requirements include:

 PNNL-SA-92585

IS.1. STOMP can be compiled using a FORTRAN 77 compiler, which generates a
static executable with arrays sized for a specific input file.

IS.2. STOMP can be compiled using a FORTRAN 90 compiler, which can generate
either a static executable or a dynamic executable. The dynamic executable
can determine array sizes during the initialization routine, and recompilation
is not needed for problems with different array sizes.

IS.3. STOMP can be executed for large problems (> 10,000 nodes) using the
SPLIB solver, an external library that contains a set of iterative solver
routines. The SPLIB solver package (Bramley and Wang 1995) is freely
available and can be downloaded from
ftp://ftp.cs.indiana.edu/pub/bramley/splib.tar.gz.

3.5. Architecture Analysis
STOMP has evolved since the software’s inception and is expected to continue to evolve
as the need for additional operational modes, additional constitutive equations, and other
needs emerge. The open architecture described in this SDD supports these changes.

Because the software is used to simulate systems (not as operational software), post-
deployment to the software will be accommodated by offering newer versions of the
software to replace older versions (i.e., there is no need to consider deployed applications
while these are in use).

Specific architectural analysis (SA) requirements include:

SA.1. As new capabilities are added, the modularity of the current STOMP design
will be supported. Backwards compatibility will be maintained.

3.6. Risks
Risks for this software are identified in the STOMP Software Quality Plan as follows:

There are specific risks and hazards that pertain to the maintenance and development of
the STOMP software that are identified here, along with the planned means to manage
and mitigate these risks and hazards. The primary risk posed by use of this software is
that a mistake in the software design or implementation could result in the calculation of
an erroneous result, resulting in one or more of the following undesirable outcomes:

1. For projects in progress, adverse impacts to project budget and schedule as
corrections are made and calculations repeated to correct the mistake.

2. For completed projects, invalidation of regulatory products (e.g.,
Environmental Impact Statements, License Applications, or Composite
Analysis) that rely on the calculations performed with the software.

3. Damage to the reputation of the Laboratory.

 PNNL-SA-92585

STOMP software is widely adopted and applied both in and out of the Laboratory, at
Hanford and at other sites worldwide. Therefore the quality of the software is expected
to be above reproach. Every effort must and will be undertaken to minimize the adverse
outcomes identified above.

• The primary means to minimize the risk of a software error of consequence are:

• Strict adherence to a STOMP Software Configuration Management Plan,

• Strict adherence to the STOMP Software Test Plan, and

• Timely identification, response, and communication regarding software errors
and anomalies discovered by recognized users of the software and reported using
the SCR process described in (the STOMP Configuration Management Plan).

3.7. References
Bramley, R and X Wang, 1995. SPLIB: A Library of Iterative Methods for Sparse Linear
Systems. Department of Computer Science, Indiana University, Bloomington, Indiana.

Nichols, W.E., N.J. Aimo, M. Oostrom, and M.D. White. 1997. STOMP Subsurface
Transport Over Multiple Phases: Application Guide, PNNL-11216, Pacific Northwest
National Laboratory, Richland, Washington.
White, M.D., and M. Oostrom. 2000. STOMP Subsurface Transport Over Multiple
Phases Theory Guide. PNNL-12030, Pacific Northwest National Laboratory, Richland,
Washington.

White MD, and M Oostrom. 2006. STOMP Subsurface Transport Over Multiple Phases
Version 4.0 User’s Guide. PNNL-15782, Pacific Northwest National Laboratory,
Richland, Washington.
Ward AL, MD White, EJ Freeman, and ZF Zhang. 2005. STOMP Subsurface Transport
Over Multiple Phase Addendum: Sparse Vegetation Evapotranspiration Model for the
Water-Air-Energy Operational Mode. PNNL-15465, Pacific Northwest National
Laboratory, Richland, Washington.
White MD, and BP McGrail. 2005. STOMP Subsurface Transport Over Multiple Phases
Version 1.0 Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation
Chemistry and Reactive Transport. PNNL-15482, Pacific Northwest National
Laboratory, Richland, Washington.
White MD, DH Bacon, BP McGrail, DJ Watson, SK White, and ZF Zhang. 2012.
STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e
Guide: Version 1.0 . PNNL-21268, Pacific Northwest National Laboratory, Richland,
Washington.

